Причины кроются в самой архитектуре моделей: LLM обучаются на огромных массивах данных, но не способны самостоятельно проверять достоверность информации. Ответы языковых моделей невозможно предугадать, поэтому и саму проблему галлюцинаций устранить сложно. Даже с доступом к актуальной информации LLM иногда выдают ответы, основанные на неправильных данных. ChatGPT часто вырывает данные из контекста или предлагает устаревшую статистику, из-за чего приходится самостоятельно проверять ответы.
В 2025 году компании-разработчики, такие как OpenAI, Google и Anthropic, сосредоточатся на интеграции моделей с базами проверенных данных и усилении фильтров для критической информации. Большинство компаний уже используют RAG-подход для устранения галлюцинаций. Плюс RAG дополнительно усиливает надежность моделей: он позволяет сначала выполнить поиск релевантных данных в подключенных базах, а затем генерировать ответы на их основе. То есть модель еще будет предоставлять ссылки на источники. Сейчас так делают GPT-4, Gemini и Perplexity.
Однако не стоит ожидать, что проблему с галлюцинациями тут же решат в 2025 году. Чтобы разучить модели «обманывать», нужны значительные ресурсы. Прежде всего, электричество, потребление которого,
по прогнозам, вырастет на 160% к 2030 году из-за разработки LLM.
Перед тем как интегрировать LLM в работу, рекомендую провести им тесты на галлюцинации и задать вопросы из нужной вам сферы. Сделать это бесплатно и без VPN можно на платформе
LLMArena. Сервис позволяет сравнить две языковые модели и выбрать ту, которая лучше справляется с вашими задачами.