Таким образом, важно преодолеть разрыв между общими знаниями LLM и любым дополнительным контекстом, чтобы помочь LLM генерировать более точные и контекстные выполнения, одновременно уменьшая галлюцинации.
РешениеТрадиционно нейронные сети адаптируются к специфичной для домена или частной информации путем точной настройки модели. Этот метод эффективен, но он требует больших вычислительных ресурсов, затрат и технических знаний, что делает его менее гибким для адаптации к меняющейся информации.
В 2020 году в статье
«Генерация дополненного извлечения для задач обработки естественного языка с интенсивным использованием знаний» (Retrieval-Augmented Generation for Knowledge-Intensive NLP Tasks)» Льюис и др. предложили более гибкий метод под названием «Генерация дополненного извлечения» (RAG). В этой статье исследователи объединили генеративную модель с модулем извлечения, чтобы предоставить дополнительную информацию из внешнего источника знаний, которую можно было бы легче обновлять.
Проще говоря, RAG для LLM — то же самое, что открытый экзамен для людей. На открытом экзамене студентам разрешается приносить справочные материалы, такие как учебники или заметки, которые они могут использовать для поиска релевантной информации для ответа на вопрос. Идея открытого экзамена заключается в том, что тест фокусируется на навыках рассуждения студентов, а не на их способности запоминать конкретную информацию.
Аналогичным образом, фактические знания отделены от возможностей рассуждения LLM и хранятся во внешнем источнике знаний, к которому можно легко получить доступ и обновить:
- Параметрические знания: полученные во время обучения, которые неявно хранятся в весах нейронной сети.
- Непараметрические знания: сохраненные во внешнем источнике знаний, например, в векторной базе данных.
(Кстати, это гениальное сравнение придумал не я. Насколько мне известно, это сравнение
впервые упомянул JJ во время конкурса Kaggle — LLM Science Exam).
Ниже изображен рабочий процесс стандартного RAG: